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STATIONARY surface waves in elastic half-space with boundary conditions corresponding to a combination of 
the Winkler model and an inertial layer at the boundary are studied. It is found that the velocity of propagation 
of a harmonic wave depends on the frequency, and the presence of constraints in a direction normal to the 
boundary results in stopping of the low frequencies, when the effect of elastic rigidity and inertia of the 
boundary are taken into account at the same time, and when the inertia of the support has no effect. The 
frequencies are not stopped when the displacements along the boundary are restricted and when the influence 
of elastic rigidity on the normal displacements of the boundary is neglected. 
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1. NORMAL CONSTRAINTS 

We consider, in an elastic half-space y 3 0 with velocities of propagation of the longitudinal and transverse 
waves a and b, the Rayleigh motion defined by the potentials 

(p (5, y, t) = A sin ogee-Dag, 9 (x, y, t) = B cos w&~@~ (1.1) 

A, B = const 

Herep < b is the velocity of wave propagation and w is the oscillation frequency. Here the coordinates of the 
displacement vector and the stress tensor com~nents are 

U=ay-as+.- aAe-g + p_lBe-Ofiu) o sin oE 

axy/‘(pd) = (-2apm1Aeeoau + (p2 + p-2)Be-w~u)cos cog (1.2) 
~~,/(p.w~) = ((fV $ p-2)Ae-oau - 2flp-1Be-m@) sin og 

where l.~ is the shear modulus of the half-space. 
The boundary conditions have the form (ki is the rigidity of the foundation and ml is inertial resistance) 

% = 0, a,, = k,v - m,&lW when y = 0 (1.3) 

Substituting the values of the stresses into Eqs (1.3), we arrive at a system of two homogeneous linear 
equations for determining A and B. The condition for the existence of a non-trivial solution leads to the 
following equation in q =plb L 1: 

QI (9) = t&j 0 - ml&) bllr, (I-4) 
Here 

QI (9) = R (d/W, (41, R (n) = (2 - @I2 - 4 I” f - +qz 7/m 

WI (9) = q3 1/l - r2qa, r = bia 

and R is the ieft-hand side of the Rayleigh equation for a half-space with a free boundary. 
The function Q,(q) increases monotonically from zero when qR = (CR/b)< 1 (CR is the velocity of the 

Rayleigh wave in a free half-space), to the value Qi (1) > 0 bounded for real values of I E [0, 11. The solid lines 
in Fig. 1 represent this function, the lines 1-4 corresponding to r = 0.1; 0.5; 0.7; 0.9. Also, q+qR@+cR) as 
w-+ 43 and Rayleigh-tie motion will not exist when [(/cl/w) -mlu] b/p. Q, (1). The latter quadratic 
inequality has two roots for every fixed value of r, and one of these roots is wk > 0. For the frequencies w < w& 
the Rayleigh solution is not realized (low frequencies are stopped). Stopping of low frequencies (w G ki bl 
(p.Qi(l))) also occurs when ml = 0. If ki = 0, then there is no stopping of the frequencies and the wave 
velocities are lower than the Rayleigh velocities for all w. 

FIG. 1. 
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For a fixed value of the ratio wave velocities r the possible velocities of propagation of the Rayleigh motion 
over the range from q = qR to q = 1. Below we give the values of qR and Q, (1) for several values of r for 
materials of solids (the velocity q was assumed to be equal to the Rayleigh velocity qR when the value of R did 
not exceed 10m5) 

r 0.1 0.3 0.5 0.7 0.9 
qR 0.955 0.949 0.932 0.878 0.608 
Q,(l) 1.005 1.048 1.155 1.400 2.294 

2. TRANSVERSE CONSTRAINTS 

The boundary conditions 

(5 - k,u - m&l I atz, XY - (TV,?, = 0 when y = 0 (2.1) 

Q2 (q) = (k,iw - m,o), Qz = R/W,, W, = q3 1/l - q2 (2.2) 

The functionQz (q) increases monotonically from - 00 when q = 0, to + 00 when q = 1 (the dashed lines l-4 in 
Fig. 1 for r = 0.1; 0.5; 0.7; 0.9), so that (2.2) h as a real root for any k2 and m2 and we have no frequency 
stopping. Also, q = qR at o = oo= d(k2/m2) and q<qR at w>wo. The velocity of propagation is lower than 
the Rayleigh velocity for all o, provided that k2 = 0. 

3. MIXED WINKLER FOUNDATION 

The boundary conditions 

a,, (5, 0, t) = k,u (I, 0, t), u*?, = k,u (5, 0, t) 

after substituting expressions (1.2) into them and equating to zero the determinant of the system of linear 
homogeneous equations for the constants A and B, lead to the following equation for determining the relative 
velocity q: 

- - 
R (q) - '& (klvl - raqa + kzT/l - q2) - ‘$*(I -VI - raq21/1 - qa) (3.1) 

When qk < q < 1, the discriminant of Eq. (3.1) is positive, and one of the roots o > 0. An analogous argument 
holds when the elastic stiffness and inertia of the support on the boundary are both taken into account. 
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